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NOMENCLATURE

a radius of ring-wing

CM moment coefficient of ing-wing, se Equation (3.12)

CN normal foi'ce coefficient of ring-wing, see Equation 03.11)

E(k) see Equation (2.29)

Jq_ see Equation (2.57)

G Green's function, see Equations (2.16) and (2.17)

9? see Equation (2.26)

H(x) heaviside step function

StSZ see Figure 2.1

k see E4uations (2.44) and (3.3)

Ski see Equation (3.10)

K(k) see Equation (2.30)

KO modified Bes~el function

X X) integrated ýerncl function, see Equation (3.8)

X,,v viscous kernel functions, see Equations (2.47) and (2.A8)

or5YJx) kernel functions

length of ring-wing, see Figure 2.2

ift•,e) see Equations (2.14) and (2.24)

L reference length

see Equation (2.24)

f• = •/IftI unit normal on S

ft• normal to control surface S, see Figure 2.1

p perturbation pressure

qo I oI
r, unit vectors, see inset in Figure 2.1

R(x) body or control surface radius

S see Figure 2.1

Tn Chebyshev polynomial of the first kind of degree n, see Reference 6

T(k') see Equation (3.9)

T(x,4) see Equation (2.15)

v. free stream velocity

o! , velocity field of non-lifting axial flow

I generalized upwash, see Equation (2.36)

1 :omponent of g, see Equations (2.38), (2.39) and (2.40)
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f/fx) upwash fir.L.;on, see Equation (2.2)

x,r,O cylindrical cvordinates, see Figure 2.1
1 = (x,yz) Cartesian coordinates, see Figure 2.1

X 2x/i

XNXT axial coordinates of body fore and aft ends, see Figure 2.1
Re Reynolds number, see Equation (2.49)
V2  Laplace operatorI(x) local angle attack of riog-wing axis, see Equation (3.6)
8* boundary layer displacement thickness

6(•) Dirac delta function
v kinematic coefficient of viscosity

P" free stream density

Re/4

4a/I

* velocity potential

see Equation (2.22)

frequency of simple harmonic oscillation

iv



I. INTRODUCTION

In Reference 1 the viscous theory of unsteady lift on two-dimensional

airfoils of arbitrary thickness distribution is developed in detail.

EAtensive numerical examples are given for steady and unsteady flow that

compare favorably with experimental results. Both the d'Alembert paradox and

the fatness paradox (see Reference 2) are resolved, and most important, the

role of viscosity in establishing a unique value of the circulatory part of

the lift is completely understood within the framework of this theory. The

concept of viscous thin airfoil theory is directly applicable to other lifting

bodies, e.g., three-dimensional wings and bodies of revolution. In a recent

report (Reference 3), completed under contract to NASA, the preliminary
application of the viscous theory to a rectangular wing is presented. The

numerical results are encouraging and reinforce the basic principles of the

two-dimensional theory.

The present report is directed towards the application of the viscous

theory to bodies of revolution. The complete unsteady potential theory is
presented and subsequently corrected for the effect of viscosity. The theory

is applied to the simple case of a ring-wing. Both numerica) results and
asymptotic results are presented. For very slender ring-wings we recover the

well known results of slender body theory. For very large diameter to length

ratios we obtain a simple asymptotic result that is in exact agreement with a

theoretical result of Ribner (Reference 4). fhe theoretical result is also in

approximate agreement with experimental results of Flatau (Reference 5).

)



II. VISCOUS THEORY OF LIFT FOR BODIES OF REVOLUTION

IN INCOMPRESSIBLE FLOW

A. Preliminary Remarks

Consider a body of revolution in a high Reynolds number (Re > 106)

incompressible flow (see Figure 2.1). In the absence of any disturbance that

would produce a transverse force (lift), the body axis is aligned with the

free stream and the mean steady flow is characterized by the velocity field vo
that we assume to be given. Suppose that the body with its boundary layer and
wake are enclosed by a cylindrical control surface S. In the domain D

exterior to S the flow is free of vorticity and thus has a velocity potential.

Forward of the plane P in Figure 2.1, the distance between the surface S and

the actual body surface will be of the order of the boundary layer thickness.f The plane P can be imagined to lie a few percent of the body length forward of

the aft end. Immediately downstream of the body, the surface S is faired

smoothly into a cylinder of constant radius that bounds the wake. As the

Reynolds number is increased beyond all bound the radius of the wake cylinder

f will tend to a constant.

Forward of the plane P, the normal momentum and pressure at a point on S

will differ from the corresponding values on the actual body surface by terms

that are of the order 8*/L where 6* is the turbulent boundary layer
displacement thickness and L is the local radius of curvature or the body

length, whichever is smaller. Terms of this order will be neglected in the

present theory. Downstream of the body the transverse load on S must tend to

zero.

To derive the viscous theory, the first step is t- formulate the

potential flow problem in D and then recast it in the form of an integral

equation for the transverse load function (to be defined), given that the
Snormal momentum (upwash) on S is specified. The local singularity in the

load-upwash kernel function is then modified (reduced in strength) to account

for the direct effect of viscosity. The principle for introducing the local
effect of viscosity is based on our previous work with viscous wing theory

0 (Reference 1).
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B. Potential Flow Problem

Let t denote the perturbation potential due to an unsteady simple

harmonic transverse momentum disturbance on S. The boundary value problem for

t is the following:

0 in D (2.1)

A= ,x)sine on s: r = R(x) (2.2)

grad t 0 at (except near the wake) (2.3)

and for the perturbation pressure

p = Dot (2.4)

where

0" Ox o + i•(2.5)

and • is the radian frequency of the specified transverse momentum

disturbance. Also note that

S.-- R' + (2.6)
bN x br

b

N4
_ _ _ _ _



where

ft = - R'(x)^ + T (2.7)

is normal to the surface S. The unit normal on S is given by

a = A = N(2.8)

We use Cartesian and cylindrical coordinates interchangeably in the subsequent

development.

Before we proceed with the representation of *, we first consider the

inverse of the relation (2.4). Note that

qo (2.9)

where

ds = s'dx =\1 + R' 2  dx (2.1U)

and

=qo = R1+o (2.11)

the speed of the nonlifting flhw. Thus, we can write

ds
T + Lw €-.-P--2,)

ds qo P=Ao (.2

The solution of this equation for t is straightforward. The final result is

5



C(xe) = v t(4,e)e -iwT(xt) dý (2.13)
•' N1

where

WfjRT2 (2.14)
P~qoV.

and

T(x,0) = qo dt (2.15)

We refer to I as the generalized load function since it defines completely the

local lift force on the surface S. The two point function T(xt) is the time

Srequired for a vortical disturbance produced by a harmonic load at station

to convect along the surface at speed qo0 to station x. It is the most

important unsteady effect of body shape on the aerodynamic loads.

C. The Load-Upwash Integral Equation

Consider the Green's function

S • G = (2.16)

that satisfies the Poisson equation

2V G 4% 6(t-t) (2.17)

where 6(t) is the Dirac delta function. Form the identity

GV2 $ - *V2G = 4n € 6(•-t) (2.18)

6



*N • -- - -• i¸= - • •, • • . " ' : • •

and integrate with respect to coordinates • over the domain D. After the

application of the divergence theorem, the final result can be expressed in

the following form:

"=-G dA (2.19)

where

dA = R(ý)dý de' (2.20)

and

R'- (2.21)

The next step is to eliminate the polar angle 0 from the problem. It

follows from the boundary conditicn (2.2) that all dependent variables are

proportional to sin 0. Thus, we write

€ = O(x,r)sin 0 (2.22)

p = P(x,r)sin 0 (2.23)

and also for the load function

t =2  x,r)sin Q (2.24)

Substitute Equations (2.22) and (2.2) into (2.19) to obtain

.•(

-•'

1 .... .. . . . .



O(x~r) =R(ý)dý 101) (2.25)

where

f cos e dO (2.26)
\[x2+r2+p2-2rP cos

4___ 2\2 (l
1 x+(~) -) K(k)+- E~k (2.27)\/x- + (-r+ 2 2k 2

with

4+r~p2 (2.28)

E(k) f= ý1- 2sin2 q dG (2.29)

K(k) =dO 20(2.30)

J0  Irl-k 2sin2

The functions E(k) and K(k) are standard elliptic integrals (see Reference 5).

Now replace 0 in the first term of (2.25) with the integral over the load

function; i.e.,

8



.( ,R(N)) = v')e -iwT(,,') dE' (2.31)

The result is

v(x,r) = ý t)df e -iwT(MIA) ZWR(ý')dt' (2.32)

Finally, we compute the normal derivative of the last result on the

surface S. The last term has a Cauchy principle value so that

Lim - 2 + - dý (2.33)
r-*R(x) 4n 6J24n X 5N

XN N

and the slash thrcigh the integral indicates the usual limit operation; i.e.,

dt = Lim dt (2.34)C+O f +XNN

The integral equation for.y can thus be written in the following form:

fX- fX:9 Vx,ý)d• --- 'fx)/v• (2.35)
. N 

O

S. . . . . . . . . . . . -- • . . . • r -,- ...-- -,-,- . . . . . . . . . . .



'NN

where

~x =#~)+ f fd~ (2.36)

and

r~ )eiWV0 N--•N• ,. f)dý' (2.37)

The upper limit of integration in Equation (2.35) is XT since the transverse

load must vanish on the wake cylinder (to the order we are working). The

generalized upwash ,g(x) can be separated into two parts; i.e.,

,49~x) =$$$b(x) +0i1l(x) (2.38)

where

+ XT z )
;0()=l) +. ~ fR: (2.39)

and

OgX (2.40)
SfT

The first part, 0 is completely determined in terms of the known upwash on
the surface of the body. The second part, 61i can only be determined after

is calkulated on the wake cylinder. The actual numerical process must be
carried out iteratively. First assume ,4g1(x) to be zero and ;olve Equation
"(2.35) for the load function. Then calcilate on the wake cylinder by using

10
!/
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Equation (2.35) with x > X Then calculate with Equation (2.40)and

correct the generalized upwash with Equation (2.38). If the wake correction
is shown to be small, the process can be terminated. Otherwise, it will be

necessary to recalculate a new load function.

We emphasize that the foregoing problem is not well posed as yet. The

reason is that the kernel function (2.37) has been derived with potential
theory and has a Cauchy ,ingularity (see below Equation (2.46)). The integral
equation (2.35) has an oigensolution. The purpose of the viscous theory is to

correct the singularity In the kernel such that Equation (2.35) has a unique

solution. We turn now to an explicit evaluation of the kernel for the case of

a ring-wing. The reason is to illustrate the basic structure of the kernel

and, in particular, the singularity. Also we show how conventional slender
body theory "tampers" with the singularity in such a way that a unique

solution is obtained in terms of an affective base Area.

D. Properties of the Kernel Function for a Ring-Wing in Steady Flow

Consider the ring-wing shown in Figure 2.2. For w = 0 the kernel (2.37)

can be expressed in the following form:

^x, = a -t) (2.41)

where

X5~x) L J (2.42)

The detailed evaluation of the ring-wing kernel is given in the Appendix. The

final result is

LX) 1 + rE-- - k) 4 (1-k2)3/ K(k sgn (2.43)
a2  LVI-k ~ I k

- - --- -- -- -- --sgn --
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Figure 2.2 The Ring-Wing in Steady Flow
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where

2a (2.4)
k:x2+4a 2

and E(k), K(k) are the elliptic integrals given by Equations (2.29) and

(2.30). Also we have the following two asymptotic results for large and smalt

x, respectively:

For x > 2a

2_X) z H(x) t?.45)

For x << 2a

2 1
_ ~ 2 (2.46)a x

Numerical calcul itions of the load distribution on a ring-wing may be

found in Section 11. Here we want to synthesize the viscous correction to

the kernel that is necessary to obtain a unique solution of the integral

equation. Also we can compare the viscotis and inviscid kernels with the
asymptotic kernel (2.45) that yields the results of slender body theory.

E. The Viscous Slender Body Kernel Function

The asymptotic behavior of the kernel function for small x (i.e.,

x << 2a, see Equation (2.46)) dictates a fundamental mathematical property of
the integral equation (2.35). That is, the equation has an eigensolution

whose magnitude is proportional to the lift on the body. The problem is

completely analogous to the two-dimensional wing theory discussed in Reference

1. There we have shown rigorously that the correct viscous modification of

the kernel is to convert the Cauchy singularity into a weaker logarithmic

singularity on the Stokes scale. For the ring-wing, the correct modification

13



of the asymptotic result (2.46) is

X,~(x 2 __ + ev-x/ 2v Ko(V~lxl/2v) (2.47)
a bx kA x 0 vIl~)

where Ko is the modified Bessel function. For x << 2a the viscous ring-wing
kernel behaves like

= I xn , x << 2a (2.48)a

The argument for correcting the ring-wing kernel for viscosity is based

entirely on our previous work on the two-dimensional wing. So long as the
effect of viscosity is confined to a circumferential region that is small

compared to the smallest geometric dimensions, the ring-wing behaves locally
like a two-dimensional wing. If we introduce the following dimensionless

parameters,

Re = - (2.49)
V

and

ada (2.50)

then a necessary requirement for the validity of Equation (2.47) is that

D1

Xe < <(2.51)

This result says that the Stokes viscous length scale must be much smaller

than the smallest geometric length scale.

14



MAnother remarkable property of the kernel function is that the

singularity near the load is not changed when the flow becomiez. unsteady. Also

the complete unsteady potential theory kernel for an arbitrary body of

revolution (see Equation (2.37)) hits a local Cauchy singularity like a

ring-wing of radius R(x). Thus, we can write down the complete viscous

slender body kernel without further ado:

I -
(x,F,) Lx) eiWT(v•,,) a•2•, R(ý')dW' (2.52)

2 ev.(x-•)/2V Ko(v~lx-•If/v)
R(Y)

The complete problem of calculating the lift (steady or unsteady) on a body of
revolution is to solve the integral equation (2.35) with the viscous kernel

(2.52). Tha solution is unique because the kernel has the correct logarithmic

singularity. Specific calculations for a ring-wing are given in Section III.

F. The Kernel of Slender Body Theory

We assume that the asymptotic result (2.45) is valid for all x and

furthermore, extend it to a slender body of revolution by replacing a with

R(x). Then the integral equation (2.35) can be written in the form

1 , 2----- -H(x-{ dC= #,x) (2.53)

N

where

= ; nR(F•)) (2.54)

--



is local the force per unit length on the body. The solution of Equation

f ;•(2.53) is

d- R2(x)9/$fkx (2.55)

For a body at constant angle of attack, we have

(2.56)

and

= dS (2.57)
S==dx

where

S =R2 (2.58)

is the local cross-sectional area of the. body. We recognize the last result

as the familiar formula of classical slender body theory; i.e., the local

lift force on a body of revolution at constant angle of attack is proportional

to the Aerivative of the cross-sectional area. The slender body formula

yields a rea..onably good approximation of the sectional lift on the forward

portion of the body. Unfortunately, for closed bodies of revolution, it leads

to the embarrassing result that the total lift is zero. In application of the

theory it has become cumstomary to introduce an "effective base area" and to

correlate measured lift data in terms of this artificial parameter. With the

foregoing general theory we can offer a plausible explanation of tis apparent

uniqueness that is brought about by introducing the familier slender body

approximation into the potential flow theory. We use the term apparent

uniqueness because the unknown lift is simply traded off for an equally

unknown base area.

16



The potential flow kernel, the viscous kernel and the slender body

aporoximation thereof are plotted in Figure 2.3. From the point of view of

the theory of integral equations, the slender body approximation represents a

rather crude elimination of the fundamental Cauchy singularity in the exact

potential flow theory. Indeed, this step eliminates the possibility of an

eigensolution and thus yields a unique value for the local normal force. The
approximation is not too bad but does not lead to a unique value for the total

lift. The viscous modification of the Cauchy singularity is the correct way

to proceed. A unique value of the total lift can be calculated without tne

device of an artificial base area.

17
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I

III. NUMERICAL RESULTS FOR A RING-WING AIRFOIL IN STEADY FLOW

To calculate the load distribution on a ring-wing, it is convenient to

introduce dimensionless variables as follows:

x 2x (3.1)
.1.

4a diameter
t half ,ength

k = T/ x2 + .r2 (3.3)

y Vo Reynolds Number referred to 1/4 (3.4)

0 If we choose the origin of coordinates to be on the axis at the midpoint on

the body axis, then the normalized integral equation can be written in the

following form:

f '91M X-V)dY= a(X) (3.5)

f where

a(X) = -z local angle of attack of the body axis (3.6)

AXx) (3.7)

i19



and

, (x)= %x kK(k) + erx Ko(alxl) (3.8)

+ 8 lxl

+-- J (lxI -2s)T(k')ds.z2 ,,0

with

T(k') = - L -E(k') (3.9)

L _

k -- = 2r (3.10)

We refer to'5(x) as the integrated kernel.

The overall normal force and moment coefficients have the following

integral representations:

CM= 1 (; X)dX= Lift(3

CM =- XAX)dX - Moment (3.12)

The reference area is chosen to be one half the surface area of the ring-wing.

The moment is measured positive nose up about the center of the ring.

20"
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The normalized integral equation (3.5) is precisely of the same form as

the equation of two-dimensional viscous thin airfoil theory (see Reference 1,

Equation (3.25)). The kernel has a logarithmic singularity and this renders a

unique solution of Equation (3.5). The load function must admit square root

singularities at the fore and aft ends. The equation was reduced to a finite

spectral form with an assumed polynomial approximation of the load; i.e.,

An Tn(X)M/••X2 (3.13)

where Tn is the Chebyshev polynomial of the first kind of degree n (see
Reference 6). The numerical algorithm is discussed in detail in Reference 1.

The integral equation was solved for a computational Reynolds number of 11)0
with 20 Chebyshev polynomials to approximate the load function. It was

determined that the solution was adequately converged for this choice of

parameters.

Typical calculations of the load distribution are plotted in Figures 3.1,

3.2 and 3.3 for three values of the fineness ratio -. We note from these

calculations that the normal force coefficient is proportional to - and thus
tends to zero as T tends to zero. This result can also be deduced
analytically since the kernel is proportional to 1/i for very slender bodies.

The limiting form is in agreement with the result of slender body theory that

predicts a zero lift force on any b~dy of constant radius. For larger values

of the fineness ratio (see Figure 3.1 with r = 1) the load distribution tends

to a form that is similar to the lift on a two-dimensional airfoil. This

result can also be deduced analytically from the asymptotic form of the kernel

(see Equation (2.46)) and is intuitively expected since each section of a thin

hoop acts like a two-dimensional airfoil section at a local angle of attack

that is a maximum on the upper and lower section and tends to zero on the

sides.

To illustrate the last point we note that the normalized ring-wing

problem can be expressed in the following form for T >> 1:

21
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0.30- T= Re 1000
"r= 1.0
CNJ •0187

0.20

/(x)

0.10

0 I
--1.0 -0.5 0 0.5 1.0

x

Figure 3.1 Load Distribution on a Ring-Wing at Constant Angle
of Attack; -r 1.0
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0.30= Re :1000
T = .25
CNa =.0042

0.20

/(X)

0.10

0
-1.0 -0.5 0 0.5 1.0

x

Figure 3.2 Load Distribution on a Ring-Wing at Constant
Angle of Attack; T .25
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0.30- Re-1000
Tz 0.1
Cr4 --.0017

0.20-

IM
0.10

0,
-1.0 -0.5 0 0.5 1.0
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I &(ey) [ n1X-Yt + ea(XY) Ko(aIX-Y)] dY a a- i (3.14)

where

1~CN

1 ,!51Y)dY = (3.15)

In the limit a + Equation (3.13) has the unique solution,

= _(x).: (a - ai) (3.16)

and if we integrate the last result over the chord, we obtain

C N a% (3.17)

or

C~ C (3.18)
Ring-Wing 1+= /D Wing

The last result is precisely the same form as the lift curve slope of a

three-dimensional wing with the typical aspect ratio correction. It also

~ •agrees exactly with a result derived by Ribner (Reference 4) with the more

elementary lifting line theory.

We compare the last asymptotic result with the experimental data of

Flatau (Reference 5) for a 11.7% thick Clark Y airfoil. Typical section data

are presented in Figure 3.4 for • 4.9. From the CL versus a data we

estimate the lift curve slope to be 2.0/rad. From Equation (3.17) the

theoretical result is 2.8/rad, a value somewhat larger than the experimental

25
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result. The discrepancy is probably due to two sources. First, the

theoretical formula is weakly asymptotic in the parameter 7g/r. For example,

if the next term in the asymptotic expansion of the denominator of Equation

(3.37) has an additive term of order (%/T) 2 then for T = 4.9 (the Flatau

value), we can expect a 25% reduction in the theoretical value. Also the
two-dimensional section lift coefficient of a Clark Y airfoil is 5.25/rad

(Reference 7) compared to the flat plate value of 2-n. This represents another

16% reduction in the calculated theoretical value.

2
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IV. SUMMARY AND RECOMMENDATIONS

The viscous theory of lift on bodies of revolution has been derived in

detail. The theory i: reduo.ed to an integral equation of the airfoil type

with a kernel function that has a logarithmic singularity. Detailed

calculations of the load distribution and several asymptotic results are
presented for a ring-wing airfoil ýi.e., the simplest body of revolution).

The calculated load distributions are similar to those on a two-dimensional

flat plate airfoil for large diameter to length ratios. It is further shown

that the asymptotic normal force coefficient on a very large diameter

ring-wing is in agreement with a theoretical result of Ribner (Reference 4).

For very slender ring-wings the normal forcP coefficient tends to zero in

agreement with the prediction of slender body theory.

t It is recommended that the complete steady flow theory for general bodies

of revolution be programmed and numerical results obtained for the load

distribution. The theoretical calculations should be compared to known

experimental data.
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APPENDIX

Evaluation of the Ring-Wing Kernel (Potential Flow)

Consider the following kernel function:

X x) = Lim d& (A.1)
r+p+a J - rop

z where

f o s R do' (A.2)

with

R= &2 + r 2 + p-L 2rp cose 1/2 (A.3)

Note that

b 1 b2 -r ose (A.4)* ~ r 2 +p2 -2rp cos(A4

Introduce the change of variable

' •- e (A.5)

and substitute Equation (A.4) into Equation (A.1). The final result is

""$fPx) = Lim (A.6)r.a br

30

-•IIP• -N~ • !1 -I l -Il l I - -i -,wlm ---in • r- /mu • Hl ___lI



with

f cos d x..)(a+r cos) (A.7)

R = (x2 + X2)1/2 (A.8)

and

x2 =r2 + a2 + 2ra cose (A.9)

To evaluate *, we introduce the variable

z =tan e/2 ,z < (A.1O)

so that

cosB=1-z2 d= 2dz+z2 +z2(A.11)

It is readily shown that

* o +1 (A.12)

where

0 2A /fA.-z2 idz (.3
o -T .-a) (1+z2)2  \A2+z2) (A.1)
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= (X)Af (z+)/C 2 B)d/2z2  (A. 14)

with

(r-a)[x2+(r-a) 2]1/2  (.5

r-a

and

B- X2 [x + +( .2] (A.17)

Now

(l-z2) A-z2j 2 - 1 _ AA2+)* 1(A)

(1+z2)(z2+A2) A-i Z2+ A-i z2+A2

F so that

2 + (A.219)
0 C-) dz -T+z2 (-1 1,Z

-A(A
2+1) I

Ai (l+z2)(z2+AJ
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All of the integrals in Equation (A.19) may be found in Reierence 8, pp. 13

through 17. The final result is

0- (r-a)(A+1) rx(.0

Thus

Lim - (A.21)
r~a br a2

To eva••uate 1 we first note that

1 = A-1 (A.22)
r-a 2a

Thus

S x2 G(A,B) (A.23)

a~x2 + (r-aZ)l23/

where

G(A,B) - (A-i) f (_z)(A-z2) dz (A.2.4)
., (z2+1)(Z2+A2) (z2+3 2 )I/ 2 (z 2 +1)I/2

or after using Equation (A.18) we can write

G(AB) = (A-I)Go + 2GI - A(A2 +I)G2  (A.25)

where

33
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Go (z+)d2z2+Zl' 
(A. 26)(=2+1)3/2(z2+B2)II2

S =f z(A.2)GI (z2+1)3/2(z2+BZ)1/2

G2 dz B212(A.28)

(z2+A2)(z2+1)1/2tz2+g
2 )l/2

Consider the intege'al

1:
F B-t (A.29)11(z2+t2)1/2(z2 +B2)1/2

From Reference 8, p. 51, we have

2- 2 MB ýJ-(A.30)
F K

Thus

G LmF =- K(k) (A.31)

with

k 
( (A.32)
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and

= 2( = K'(k) (A.33)

where K(k) in the standard elliptic integral of the first kind; i.e.,

K(k) x/2  d (A.34)
'/l-k 2 si n2o

In the complex z plane the integrand of G2 has branch points at z = - i

and z ± iB and simple poles at z = ± iA. With the contour shown in the

sketch we can replace G2 by an integral around ,he branch cut and the pole at

•;z- plane

iA

iB
BBranch

Cut

z = iA. The result is

__G2____-- ___- - "dt

A(A2 -1)1/ 2 (A2.B 2 )1/ 2- (A2-t 2 )(t 2-) 1i/ 2 (B2-t 2 )1i/2 (A35)

I C
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where the first term is the residue at z = iA. The integral is given in

Reference 8, p. 41, so that

G + 2 2 .A 2k2

A(A2 -1) 1/ 2 (A2 -B2 ) 1/ 2 + --K(k) + (A2_ 1BA2  BA2 (A2 ") (A.36)

where 11 is the elliptic integral of the third kind; i.e.,

II(p,k) f dt , < k < 1 p > - I (A.37)

0  (l+pt 2 )V(l-t 2 )(1-k 2t 2 )

With Equations (A.31), (A.33) and (A.37) we can write G in the following form:

G(A,B) = - 1 + K(k) + 4 K'(k) (A.38)B /B 3k

S2 -(L2+1• +A2k2 k) +_ A2+1
- A2- ) AI A2 _1 (A2_1)I/2(A2/B2)I/2

The final step in the derivation of the ring-wing kernel is to

differentiate Equation (A.38) with respect to r and take the limit as r + a.

It ic useful to note that

Lim b 1 (A.39)
r+a br A 2a

and

Lim = 0 (A.40)
r+a or A2
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Al so

Lim II A2k2- , k= I (-k 2 ,k) E(k) (A.41)r-*a A2 _1 /14k 2

and

Ikr = x2 /(x 2+4a 2 )3 / 2  (A.42)T r=a

where E(k) is the elliptic integral of the second kind; i.e.,

Uo/2

E(k) f V1-k2sin24 do (A.43)

After a considerable amount of detailed algebraic manipulation, the complete

ring-wing kernel function can be expressed in the following form:

5Y~) ~ ~~ !h~A? -k\ 2 (A.44)2a LL k!

42 (1-k 2 )3/ 2 K~k)] sgn

where

2a

-2a 0 ( k < 1 (A.45)

We conclude this appendix by stating two asymptotic properties of the
kernel. First, we note that
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FI

lxi»2 -k- 2a (a3
•_! j xj >> 2a--k =x2--• + 0/ a_1. (A.46)

IX, i txj3)

and the kernel has the simple approximation

K(x) - H(x) for lxi >> 2a (A.47)
a2

where H(x) is the heaviside step function. We refer to this asymptotic form
as the slender body kernel. The seco-nd result is obtained for x << 2a or
k +1. In this case we identify the Cauchy singularity in the kernel; i.e.,

K(x) ' - for x << 2a (A.48)
4ax

Further discussion of the kernel may be found in the main text.
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